Pilot Testing of a Highly Efficient Pre-combustion Sorbent-based Carbon Capture System (Contract No. DE-FE-0013105)

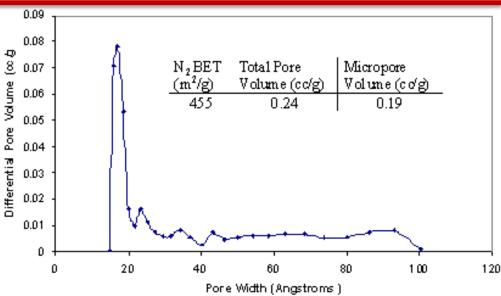
Gökhan Alptekin, PhD Ambal Jayaraman, PhD Matt Cates Mike Bonnema Jim Dippo David Gribble Kerry Libberton

DOE/NETL Carbon Capture Meeting Pittsburgh, PA August 8, 2016

TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

Project Summary

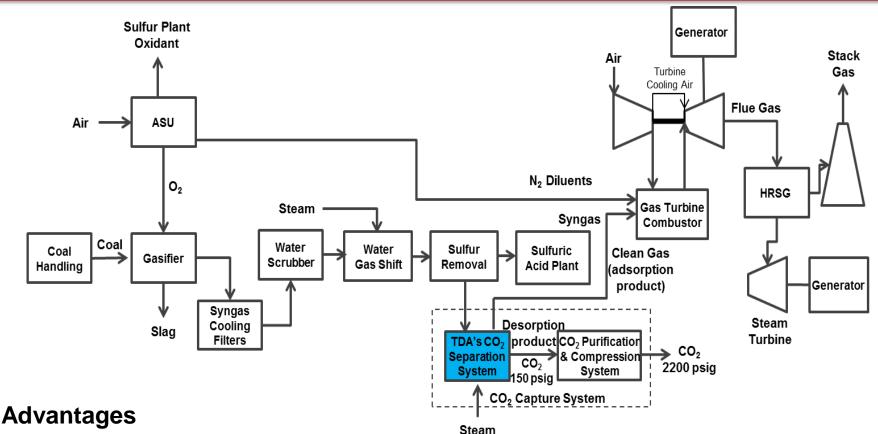
- The objective is to develop a new sorbent-based pre-combustion capture technology for Integrated Gasification Combined Cycle (IGCC) power plants
- Demonstrate techno-economic viability of the new technology by:
 - 1) Evaluating technical feasibility in 0.1 MW_e slipstream tests
 - 2) Carrying out high fidelity process design and engineering analysis
- Major Project Tasks
 - Sorbent Manufacturing
 - Performance validation via long-term cycling tests
 - Reactor Design
 - CFD Analysis and PSA cycle optimization with adsorption modeling
 - Fabricate a Pilot-scale Prototype Unit for full-concept evaluation
 - Evaluations at various sites using coal-derived synthesis gas
 - Techno-economic analysis
 - High fidelity engineering analysis and process simulation



Project Partners

TDA's Approach

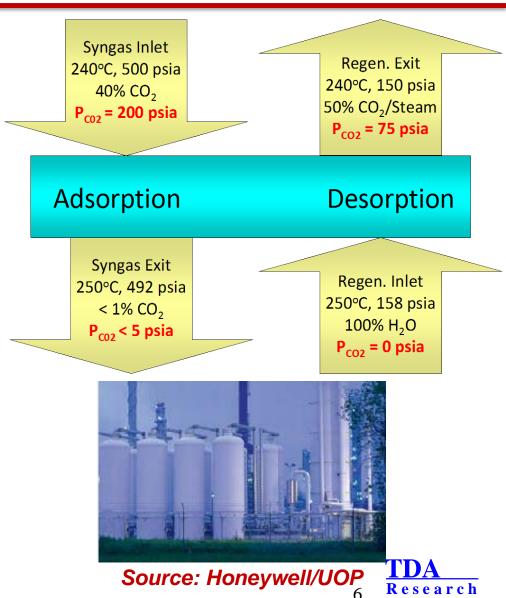
- TDA's uses a mesoporous carbon modified with surface functional groups that remove CO₂ via strong physical adsorption
 - CO₂-surface interaction is strong enough to allow operation at elevated temperatures
 - Because CO₂ is not bonded via a covalent bond, the energy input for regeneration is low
- Heat of CO₂ adsorption is 4.9 kcal/mol for TDA sorbent
 - Comparable to that of Selexol
- Net energy loss in sorbent regeneration is similar to Selexol, but a much higher IGCC efficiency can be achieved due to high temperature CO₂ capture


- Pore size can be finely tuned in the 10 to 100 A range
- Mesopores eliminates diffusion limitations and rapid mass transfer, while enables high surface area

US Patent 9,120,079, Dietz, Alptekin, Jayaraman "High Capacity Carbon Dioxide Sorbent" US 6,297,293; US 6,737,445; US 7,167,354 US Pat.App. 61790193, Alptekin, Jayaraman, Copeland "Precombustion Carbon Capture System Using a Regenerable Sorbent"

Δ

Integration to the IGCC Power Plant



- Higher mass throughput to gas turbine higher efficiency
- Lower GT temperature Reduced need for HP N₂ dilution and lower NO_X formation
- Elimination of heat exchangers needed for cooling and re-heating the gas
- Elimination of gray water treatment problem
- Potential for further efficiency improvements via integration with WGS

Operating Conditions

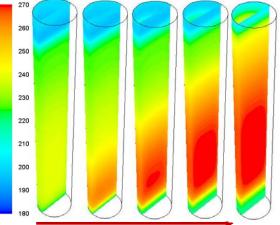
- CO₂ is recovered via combined pressure and concentration swing
 - CO₂ recovery at ~150 psia reduces energy need for CO₂ compression
 - Small steam purge ensures high product purity
- Isothermal operation eliminates heat/cool transitions
 - Rapid cycles reduces cycle time and increases sorbent utilization
- Similar PSA systems are used in commercial H₂ plants and air separation plants

Primary Focus

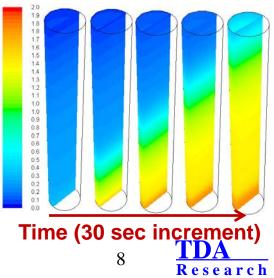
- 0.1 MW_e evaluation in a world class IGCC plant to demonstrate full benefits of the technology
 - Testing with high pressure gas
- Demonstrate full operation scheme
 - 8 reactors and all accumulators
 - Utilize product/inert gas purges
 as needed
 - H₂ recovery/CO₂ purity
- Long-term performance evaluation
- Evaluations at two sites
 - Field Test #1 at NCCC Air blown gasification
 - Field Test #2 at Sinopec Yangtzi Petro-chemical Plant, Nanjing, Jiangsu Province, China – Oxygen blown gasification

National Carbon Capture Center

Yangtzi Petro-chemical Plant



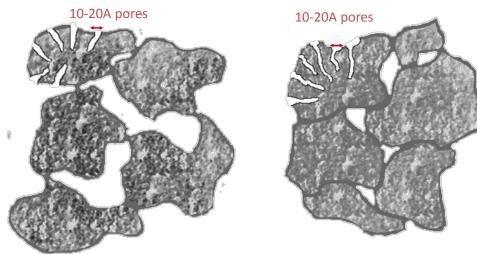
Scope of Work – Budget Period #1


Work Completed in BP1

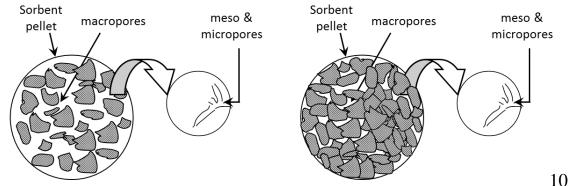
- Develop a Manufacturing Plan and Quality Assurance Plan
- Sorbent production
- Develop a multi-component adsorption
 model for cycle optimization
- Design the sorbent reactors
 - CFD simulations
- Complete detailed design package for the 0.1 MW_e pilot-scale field test unit
 - Approval from NCCC and Sinopec
- Provide the design package to DOE with detailed vendor quotes
- Preliminary TEA using DOE guidelines

Temperature Distribution (°C)

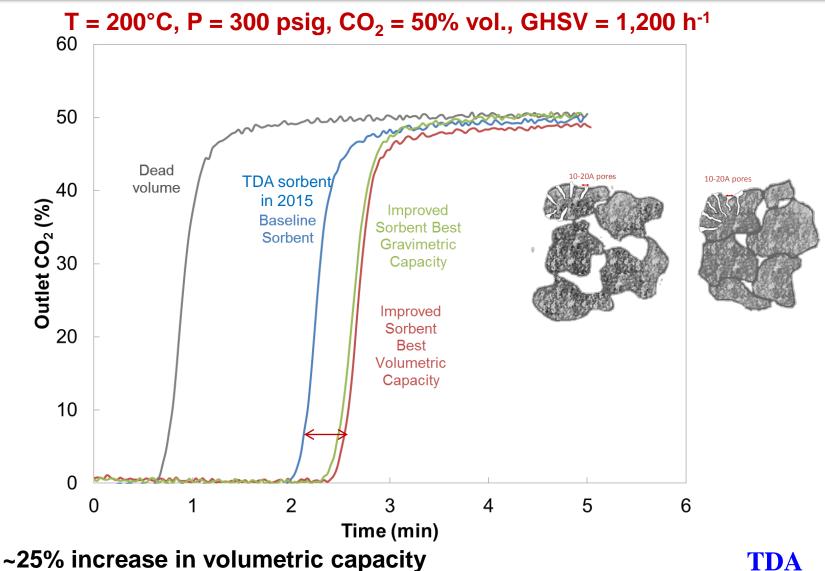
Time (30 sec increment) CO₂(s) mol-CO₂/kg-sorbent



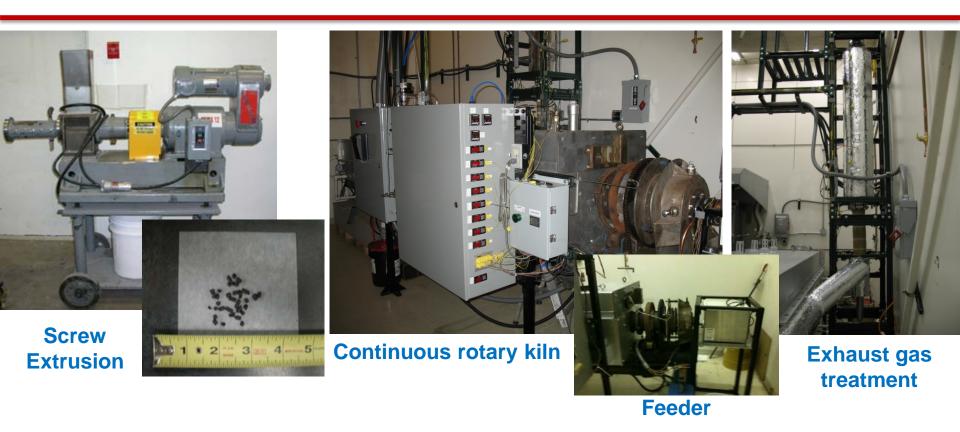
Scope of Work – Budget Period #2


- Sorbent Production
 - Completed
- Sorbent Life Test (up to 20,000 cycles)
 - To be completed by 09/30/2016
- Optimize the PSA cycle sequence for Full-scale Unit
 - To be completed by 09/30/2016
- Fabrication of the 0.1 MW_e pilot-scale field test unit
 - To be completed by 09/30/2016
- Update process design and simulation
 - Reflect modifications in cycle sequence and sorbent improvement
 - To be completed by 09/30/2016

Improvements in Sorbent



- Macropore volume is reduced, greatly improving the bulk density and volumetric capacity without significant loss in mass capacity
 - Smaller reactors and lower capital cost
- Reduced void volume (ullage space)
 - Higher product purity at lower purge gas


Research

Improvements in Sorbent Performance

Research

Sorbent Manufacturing

- Manufacturing Plan and QA Plans are modified to reflect changes
- Sorbent production is completed using high throughput production equipment

12

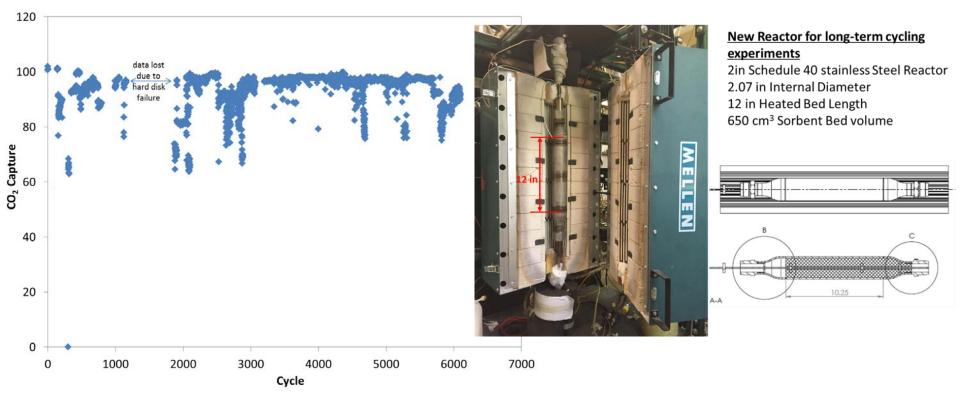
Researc

• Good agreement batch-to-batch and with-in-batch

Sorbent and Catalyst for Field Tests

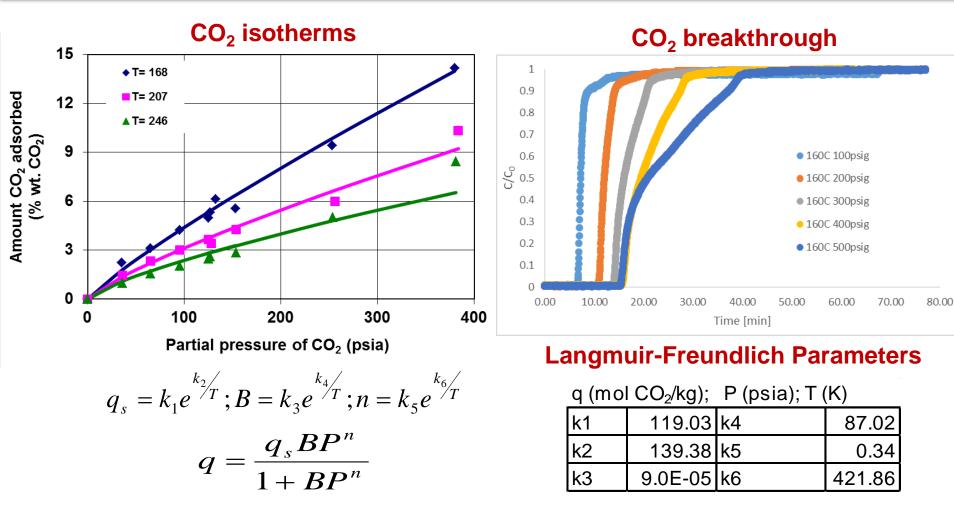
Sulfur Sorbent and WGS Catalyst

CO₂ Sorbent for Field Tests



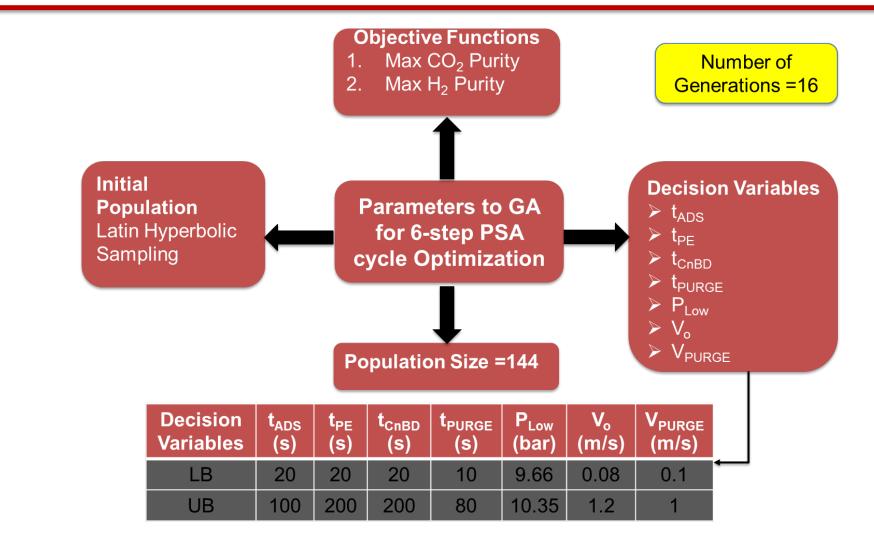
- 2 m³ of TDA's CO₂ sorbent has been produced for use in the field tests
- Warm gas Sulfur removal sorbent and High and Low Temperature WGS catalysts have been procured from clariant

TDA Researci


Sorbent Life Tests

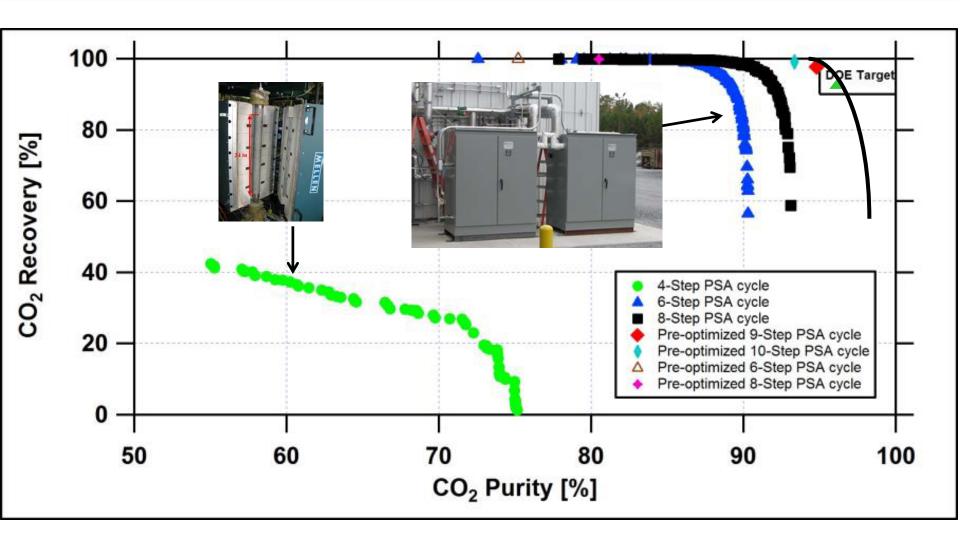
T = 200°C, P_{ads} = 500 psig, P_{des} = 75-300 psig, simulated syngas

- Previously we demonstrated over 11,500 cycles with our baseline formulation
- TDA's improved sorbent has so far maintained its performance over 6,000 cycles (60,000 cycles to be completed by end of BP4)


Adsorption Modeling Results

• CO₂ isotherm and breakthrough models were updated

PSA Cycle Optimization



• We used a Genetic Algorithm (GA) to optimize the cycle parameters

16

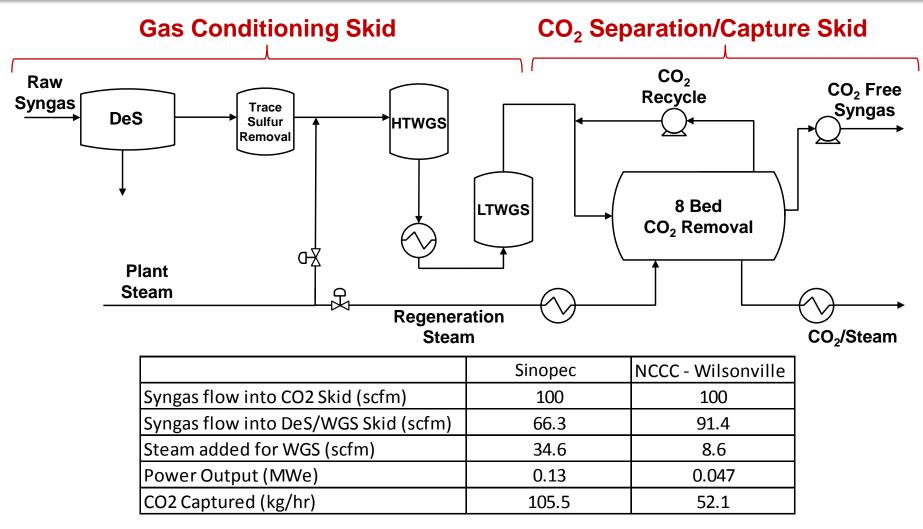
Research

Pareto Charts

Process Cycle Optimization

• BP1 – PSA Cycle Scheme – 16 min full cycles – 7 min hold time

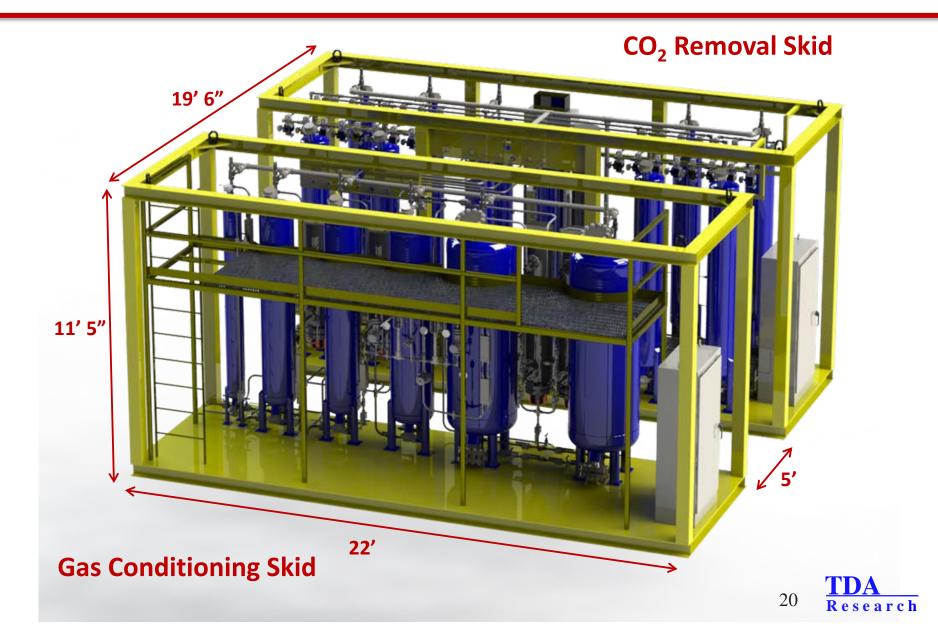
_																						
	Stage 1		Stage 2		Stage 3		Stage 4		Stage 5		Stage 6		Stage 7		Stage 8							
Time (mir	2	2	1		0.5	0.5	0.5	0.5	1	0.5	0.5	1		2	0.5	1.5	0.5	0.5	1	1		0.5 0.5
Bed 1	A	DS	HOL	.D E	Q1D	HOLD	Hold	EQ2D	Hold	EQ3D	CoDEP	BD	PU	RGE	EQ3R	HOLD	Hold	EQ2R	Hold	Hold	E	Q1R PRESS
Bed 2	Hold	EQ1R PRESS		ADS	S		HC)LD	EQ1D HOLD	Hold	EQ2D	Hold	EQ3D CoDEI	P BD	F	URGE	EQ3R		HOLD	Hold EC	2R	Hold
Bed 3	Hold EQ2R	Hold	Hold	d E	EQ1R	PRESS		A	DS	HC	DLD	EQ1D HOLD	Hold EQ2D	Hold	EQ3D CoD	EP BD		PUF	RGE	EQ3R	H	IOLD
Bed 4		HOLD	Hold E	EQ2R	Но	old	Нс	old	EQ1R PRESS		AI	DS	HOLD	EQ1D HOLD	Hold EQ2	D Hold	EQ3D	Codep	BD		PURG	<u>SE</u>
Bed 5	PUF	RGE	EQ3R	ŀ	HOLD		Hold	EQ2R	Hold	Но	bld	EQ1R PRESS	А	.DS	HOLD	<mark>eq1d</mark> hold	Hold	EQ2D	Hold	EQ3D Co	DEP	BD
Bed 6	EQ3D CoDEP	BD		PURC	GE		EQ3R		HOLD	Hold	EQ2R	Hold	Hold	EQ1R PRESS		ADS	HC)LD	EQ1D HOLD	Hold EC	2D	Hold
Bed 7	EQ2D	Hold	EQ3D C	Codep	В	D		PUF	RGE	EQ3R		HOLD	Hold EQ2R	Hold	Hold	EQ1R PRESS		A	DS	HOLD	E	<mark>q1D</mark> Hold
Bed 8	HOLD	EQ1D HOLD	Hold E	EQ2D	Но	bld	EQ3D	Codep	BD		PUI	RGE	EQ3R	HOLD	Hold EQ2	<mark>R</mark> Hold	Но	old	EQ1R PRESS		ADS	5


• BP2 – PSA Cycle Scheme – 8 min full cycles – 0 min hold time

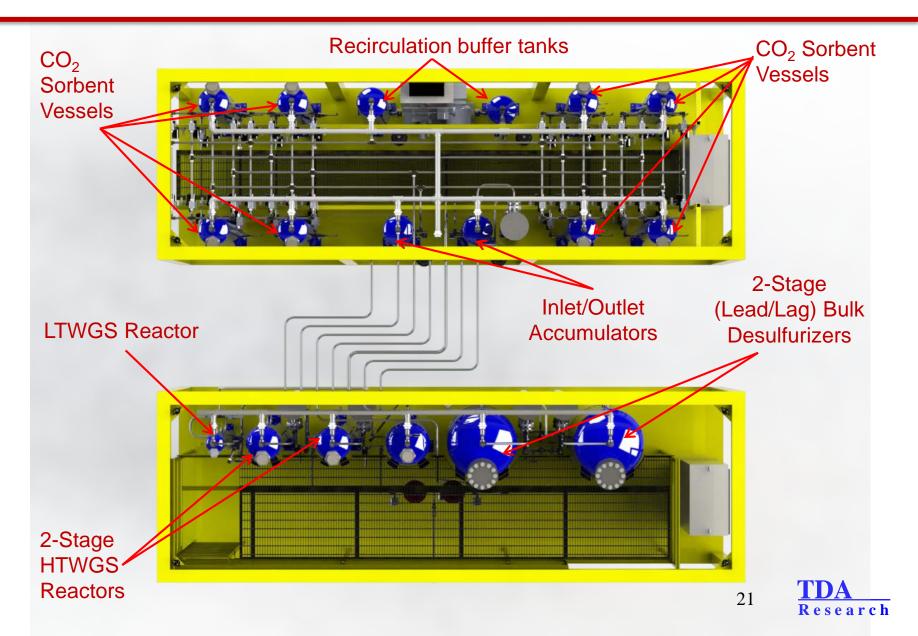
Total Cycle	Total Cycle time (8 min) Idle time (0 min)															
	Stage 1 Stage 2		Stage 3		Stage 4		Stage 5		Stage 6		Stage 7		Sta	ge 8		
Time (mir	1 1		0.5	0.5	0.5	0.5	1		1		0.5	0.5	0.5	0.5		
Bed 1	Bed 1 ADS			EQ1D	EQ2D	EQ3D	CoDEP	PURGE			EQ3R	EQ2R	EQ1R	PRESS		
Bed 2	2 EQ1R PRESS A			DS		EQ1D	EQ2D	EQ3D	CoDEP	ODEP PURGE			EQ3R	EQ2R		
Bed 3	EQ3R	EQ2R	EQ1R	PRESS		A	OS		EQ1D	EQ2D	EQ3D	CoDEP			RGE	
Bed 4	PU	IRGE	EQ3R	EQ2R	EQ1R	PRESS		A	DS		EQ1D	EQ2D	EQ3D	CoDEP	PU	RGE
Bed 5	15 PURGE			EQ3R	EQ2R	EQ1R	PRESS		Al	DS EQ1D EQ2D EQ3E			EQ3D	CoDEP		
Bed 6	EQ3D	Codep		PU	RGE		EQ3R	EQ2R	EQ1R	PRESS		ADS			EQ1D	EQ2D
Bed 7	EQ1D	EQ2D	EQ3D	CoDEP		PUF	RGE		EQ3R	EQ2R	EQ1R PRESS ADS					
Bed 8	8 ADS EQ1D EQ2D			EQ3D	Codep	PURGE EQ3R EQ2R EQ1R PRESS			PRESS	ADS						

 The faster cycling allows to reduce the bed size by increasing sorbent utilization/productivity

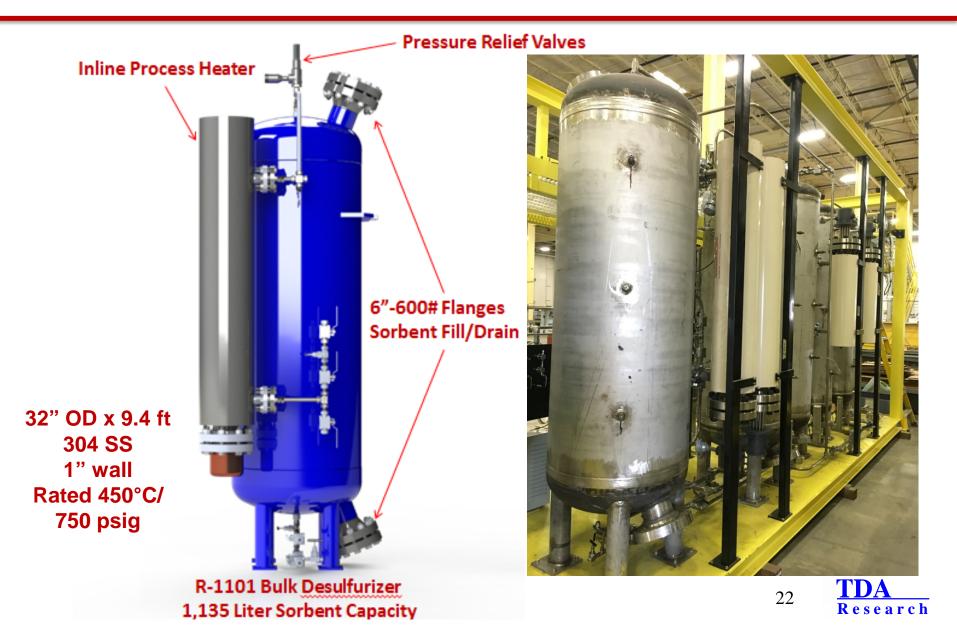
0.1 MW_e Pilot Unit for Field Tests

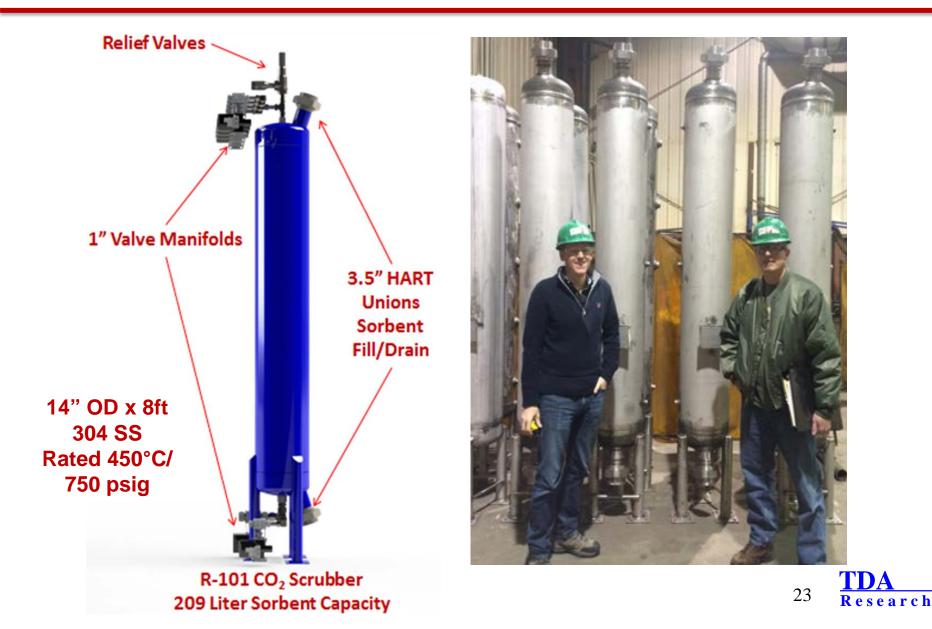


• Evaluation will focus on critical sub-systems (CO₂ purification is excluded)


19

Research


0.1 MW Pilot Unit Design


Slipstream Test Skid - Top View

Desulfurization Reactors

CO₂ Sorbent Reactors

CO₂ Sorbent Reactors

CO₂ Removal Skid

- All plumbing work, installations and heat tracing have been completed
- Remaining work is to completion of the insulation and electrical wiring
- Skid completion 8/31/2016

Gas Conditioning Skid

- Vessel have been mounted and all plumbing work has been completed
- Remaining activities (install heat tracing, insulation, electrical) to be completed by 9/15/2016
 26 Research

Control System/Electrical Wiring

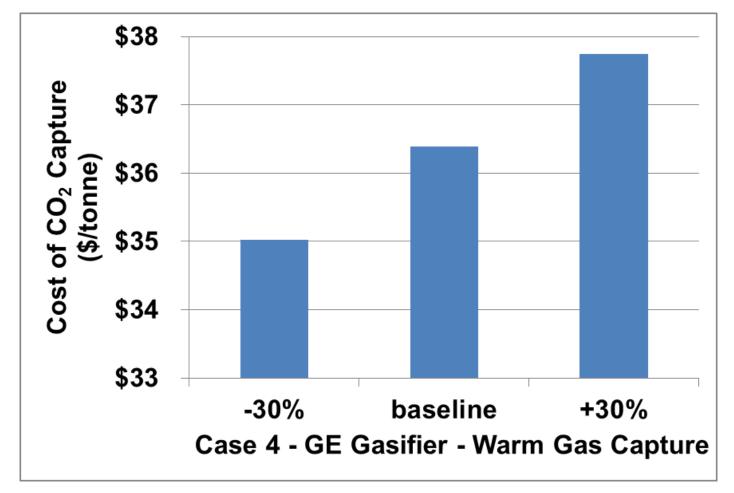
- Fabrication/installation of control box is complete
- Programming is also complete

E-Gas[™] & GE Gasifiers

	E-Gas [™]	⁴ Gasifier	GE G	asifier
	Case 1	Case 2	Case 3	Case 4
CO ₂ Capture Technology	Cold Gas Cleanup Selexol [™]	Warm Gas Cleanup TDA's CO ₂ Sorbent	Cold Gas Cleanup Selexol [™]	Warm Gas Cleanup TDA's CO ₂ Sorbent
CO ₂ Capture, %	90.0	90.0	90.0	90.0
Gross Power Generated, kWe	716,419	659,244	727,370	667,263
Gas Turbine Power	464,000	418,911	464,000	411,132
Steam Turbine Power	252,419	240,333	263,371	256,131
Auxiliary Load, kWe	194,924	119,583	192,927	115,576
Net Power, kWe	521,496	539,661	534,443	551,686
Net Plant Efficiency, % HHV	31.20	33.70	32.00	34.30
Coal Feed Rate, kg/h Raw Water Usage, GPM/MWe Total Plant Cost, \$/kWe	221,463 10.8 3,427	212,166 10.8 3,061	221,584 10.9 3,387	213,013 10.5 3,109
COE without CO ₂ TS&M, \$/MWh COE with CO ₂ TS&M, \$/MWh	135.4 144.2	121.2 129.4	133.5 142.1	122.1 130.1
Cost of CO ₂ Capture \$/tonne	51.98	38.08	47.89	36.34

- IGCC plant with TDA's CO₂ capture system achieves higher efficiency (33.7%) than IGCC with Selexol[™] (31.2%)
- Cost of CO₂ capture is calculated as \$38.1 and \$36.3 per tonne for GE and E-Gas[™] gasifiers, respectively (24-27% reduction against Selexol[™])

Research


Shell & TRIG Gasifiers

	Shell	Gasifier	TRIG	Gasifier*		
	Case 5	Case 6	Case 7	Case 8		
CO ₂ Capture Technology	Cold Gas Cleanup Selexol [™]	Warm Gas Cleanup TDA's CO₂ Sorbent	Cold Gas Cleanup Selexol [™]	Warm Gas Cleanup TDA's CO ₂ Sorbent		
CO ₂ Capture, %	90.0	90.0	90.0	90.0		
Gross Power Generated, kWe	683,991	614,090	625,645	606,794		
Gas Turbine Power	464,000	411,797	424,616	406,943		
Steam Turbine Power	219,991	202,293	201,029	199,851		
Auxiliary Load, kWe	179,839	107,813	163,829	120,348		
Net Power, kWe	504,152	506,277	461,816	486,446		
Net Plant Efficiency, % HHV	31.10	33.33	31.80	34.00		
Coal Feed Rate, kg/h Raw Water Usage, GPM/MWe Total Plant Cost, \$/kWe	215,041 9.9 3,884	201,426 10.8 3,523	262,700 8.3 3,679	258,882 9.8 3,347		
COE without CO ₂ TS&M, \$/MWh COE with CO ₂ TS&M, \$/MWh	149.1 157.9	134.9 143.1	123.4 142.5	112.4 129.9		
Cost of CO ₂ Capture \$/tonne	57	43	52	40		

* Sub-bituminouis coal to match the previous DOE baseline for this gasifer

- IGCC plant with TDA's CO₂ capture system achieves higher efficiencies (33.33% and 34.0%) than IGCC with Selexol[™] (31.1% and 31.8%)
- Cost of CO₂ capture is calculated as \$43 and \$40 per tonne for Shell and TRIG gasifiers, respectively (23-25% reduction against Selexol[™]) TDA Research

Sensitivity Analysis

Cost of CO₂ Capture changes from \$35 to \$37.8 per tonne if the capital cost changes from +30% to -30%

Reactor Design Concepts

- Different reactor concepts have been evaluated
- Multiple train vertical reactors with internal flow distribution are selected for final design

GE Gasifier	
Syngas flow, kmol/h	34,747
Sorbent needed, kg	1,115,903
L	1,859,838
Cycle time, min	8
Ads. GHSV, h ⁻¹	1,117
Total Beds	16
Bed. Volume, L	116,240
Bed Dimensions	
Diameter, ft	14
Length, ft	30.1
Vessel wall thickness, in	5.0
L/D	2.30
Particle size, in	1/8
Bed Pressure drop, psid	3.6

Research

TDA Design

Source: Honeywell/UOP

World-class PSA systems used in H₂ purification produces up to 400,000 m³/hr H₂ (compared to ~780,000 m³/hr syngas flow rate for the based case used in TEA) 31

Acknowledgements

- The funding from DOE/NETL under Contract No. DE-FE-0013105 is greatly acknowledged
- DOE Project Manager, Andrew O'Palko, DOE/NETL
- Dr. Chuck Sishtla and Andy Hill, GTI
- Dr. Arvind Rajendran, UOA
- Dr. Ashok Rao, UCI
- Mr. Scott Machovec and Frank Morton, Southern Co.
- Dr. Chen Chaomei, Sinopec

